Evaluation of Eurocode 7 Example 2.3 – PILE IN CLAY ETC 10

Adriaan van Seters Fugro Ingenieursbureau BV The Netherlands

Contents - Example 2.3 - Pile in Clay

- Introduction in example
- SLS-design source of parameters
- Characteristic values of Cu profile
- SLS required pile length
- ULS shaft friction / endbearing computation
- Design Approaches used
- Load/strength/resistance factors
- ULS computed pile length
- Conclusions

Pile in Clay - Outline of problem

Soil Conditions

0 – 3 to 4 m Below 3 to 4 m Below 34 m Man made ground, clayey sand, gravel London CLAY – Cu: 30 – 230 kPa SAND

2nd International Workshop on Evaluation of Eurocode 7, Pavia, Italy, April 2010

Undrained shear strength based on UU-tests

2nd International Workshop on Evaluation of Eurocode 7, Pavia, Italy, April 2010

Questions asked

1st Question 17 Respondents from D, UK, PT, PL, IT:

- Permanent load 300 kN, variable load 150 kN downward
- SLS maximum settlement 20 mm
- SLS–State required pile length?
- ULS-State required pile length?

2nd Question – 7 Respondents:

Repeat the exercise using the given Cu design values (red lines)

General Results

Observations:

- 13 (of 17) have designed more than 3 piles in clay
- 15 (of 17) are confident in a sound EC7 design
- 9 used an average of all tests
- 8 used nearest test results, took location into account
- 13 (of 14) assumed a linear/bilinear/stepped variation of Cu or E with depth

Where were the Parameters for SLS-design based on?

More than one answer was possible!

2nd International Workshop on Evaluation of Eurocode 7, Pavia, Italy, April 2010

Correlations for parameter assessment

- Relation E_{und} and OCR, Duncan et al
- Cu = 4.5 N SPT, Stroud
- Adhesion factors, Tomlinson
- DIN 1054
- Correlations UU and qc, Kempfert
- Transform functions for bored piles, Gwizdala et al
- · EA Pfahle
- · Correlation Cu and Plasticity Index, Duncan et al.
- Relation E'/N60 (SPT), Stroud

How did you derive at the characteristic values?

Answer	No	Comments
By eye	9	
Linear regression	3	
Existing standard	2	DIN 1054, EN1997-1
Published correlation	2	CIRIA, SPT–Stroud
Other	5	

Characteristic values for SPT-N, CPT-qc, Plim and Triaxial Cu

Questions 11–13 (qc, Plim, SPT–N) not answered \rightarrow Only characteristic values CU–value (Q14)

Method of calculation - Pile settlement

- No method from the national Annex (Annex F is N.A.)
- German standard DIN 1054, Annex B
- EA-Pfahle, German method
- Wide range of handbooks, references:
 - Linear elastic solution
 - T-z, q-z curves, Fellenius
 - Transform functions method
 - T-z curves Reese & Wang (1990)
 - Poulos and Davis (1980)
 - Randolph and Clancy (1993)
 - Piglet, Randolph
 - Tomlinson

Q17 - Which length is needed in SLS - state?

- 12 Answers received
- Average pile length is 14 m
- Standard deviation of 2.8 m variation 20 %
- All countries in the same range

Tests used for ULS Pile design

Correlations for ULS design

- Wide range of correlations:
 - DIN 1054
 - Cu = 4.5 N (SPT) or f1 * N (SPT), Stroud
 - Tomlinson, adhesion factor a for piles
 - Kempfert et al, Correlation from UU-test to cone resistance
 - Polish piling code PN-B-02482
 - German code EA-Pfahle
 - Cone $q_c = Cu * Nc + \sigma_{v0}$
 - CPT cu correlation Meigh (1987, CIRIA)
 - DIN 4094-1: 2002-06 (CPT)
 - Baguelin et al, 1978 (pressuremeter)

Characteristic values of Unit Shaft Resistance

Characteristic values - Unit Base resistance

Design Approaches - ULS Design 12 Number of participants 10 8 6 4 2 0 DA1 - C1.1 + C1.2 DA1 - C1.1 DA1 - C1.2 DA2/DA2* DA3 Design approaches Germany **Others**

Use of Partial Safety Factors in ULS-check

Load factors

• All participants: DA1 – Comb. 1, DA2 $\rightarrow \gamma_G = 1.35 \gamma_Q = 1.5$ DA1 – Comb. 2 $\rightarrow \gamma_G = 1.0 \gamma_Q = 1.3$

Partial factors on strength

- Generally no partial factors on Cu (DA3) were applied
- Partial factors on shaft/base friction acc Nat Annexes:
 - DA1 Comb. 1 $\rightarrow \gamma_{shaft} = 1.0 \gamma_{base} = 1.0 (PL/PT: 1.25)$
 - DA1 Comb. 2 $\rightarrow \gamma_{shaft} = 1.3/1.45/1.6 \gamma_{base} = 1.6/1.7/2.0$
 - DA2 $\rightarrow \gamma_{shaft} = 1.1/1.4 \gamma_{base} = 1.1/1.4$
 - ξ -factors: ξ 4 (9x) \rightarrow 1.135 to 1.7, ξ 3 (2x) \rightarrow 1.45

Partial model factor

• UK / PT \rightarrow partial model factor of 1.4 / 1.5 on Cu

Results of the Analyses – ULS Pile length

- 16 answers received
- Average pile length is 15.1 m (SLS 14.0 m)
- Standard deviation of 2.7 m (SLS 2.8 m)
- UK pile length 12.5 m
- Italy pile length 17.5 m
- · Others pile length ca. 15 m

Conclusions - Example bored pile in clay

- 17 participants from 5 countries!
- All answers translated soil data to Cu-value using many correlations!
- Variation of Characteristic values of Cu (no anomalies, below level + 7 m) within 10 %.
- Many SLS-methods, less ULS-methods (all based on Cu)
- Good agreement load factors + Design load (630 kN)
- Spread in γ_{shaft} and γ_{base} in DA1 Comb 2 (and DA2?)
- Use of partial model factor?
- Variation computed pile length (SLS and ULS) ca. 20 %

Thanks for all contributions!

Are we confident in Eurocode Design??????

Is EC7 - Design Conservative?

Comparison EC7 with previous design

2nd International Workshop on Evaluation of Eurocode 7, Pavia, Italy, April 2010